Numerical Simulation of Effects of Heat Soak-Back onMicro-Scale Flow Through a Capillary inADN-Based Thruster
1.Advanced Space Propulsion Laboratory,Beijing Institute of Control Engineering,Beijing 100190,China;2.Beijing Engineering Research Center of Efficient and Green Aerospace Propulsion Technology,Beijing 100190,China;3.School of Mechanical,Electronic and Control Engineering,Beijing Jiaotong University,Beijing 100044,China
[1] Hwang C H, Baek S W, Cho S J. Experimental Investigation of Decomposition and Evaporation Characteristics of HAN-Based Monopropellants[J]. Combustion and Flame, 2014, 161(4): 1109-1116.
[2] Kumar Pratim. An Overview on Properties, Thermal Decomposition, and Combustion Behavior of ADN and ADN Based Solid Propellants[J]. Defence Technology, 2018, 14(6): 661-673.
[3] Ide Y, Takahashi T, Iwai K, et al. Potential of ADN-Based Ionic Liquid Propellant for Spacecraft Propulsion[J]. Procedia Engineering, 2015, 99: 332-337.
[4] Anflo K, M?llerberg R. Flight Demonstration of New Thruster and Green Propellant Technology on the PRISMA Satellite[J]. Acta Astronautica, 2009, 65(9): 1238-1249.
[5] 张万生, 王晓东, 夏连根, 等. 绿色ADN液体推进剂应用研究进展[C]. 青岛:中国化学会第八届全国化学推进剂学术会议, 2017.
[6] 姚兆普, 苗 新, 陈 君, 等. 基于 ADN 基液体推进剂的无毒可贮存空间发动机试验研究[J]. 推进技术, 2014, 35(9): 1247-1252.
[7] 陈 君. 二硝酰胺铵(ADN)基液体推进剂催化分解及高压燃烧反应的试验与计算研究[D]. 北京:北京交通大学, 2018.
[8] Asad R, Jitkai C, Feroz K, et al. Characterization and Thrust Measurements from Electrolytic Decomposition of Ammonium Dinitramide (ADN) Based Liquid Monopropellant FLP-103 in MEMS Thrusters[J]. Chinese Journal of Chemical Engineering, 2018, 26(9): 1992-2002,
[9] Yusong Y, Guoxiu L, Tao Z, et al. Effects of Catalyst-bed’s Structure Parameters on Decomposition and Combustion Characteristics of an Ammonium Dinitramide (ADN)-Based Thruster[J]. Energy Conversion and Management, 2015, 106: 566-575.
[10] Wu Suchen, Yu Cheng, Yu Fawen, et al. Lattice Boltzmann Simulation of Co-Existing Boiling and Condensation Phase Changes in a Confined Micro-Space[J]. International Journal of Heat and Mass Transfer, 2018, 126 (B): 773-782.
[11] Mosayeb S, Ali Q R, Martin J B, Branko B. A Numerical Model of Two-Phase Flow at the Micro-Scale Using the Volume-of-Fluid Method[J]. Journal of Computational Physics, 2018, 357: 159-182.
[12] Grétar T, Jiacai L. Direct Numerical Simulations of Flows with Phase Change[R]. AIAA 96-0857.
[13] 孙童童. 微尺度液—汽相变传热的分子动力学模拟[D]. 大连:大连理工大学, 2016.
[14] Saeed S L, Anders C O, S?ren K K. VOF Modelling of Gas-Liquid Flow in PEM Water Electrolysis Cell Micro-Channels[J]. International Journal of Hydrogen Energy,2017, 42(26): 16333-16344,
[15] Gim Y S, Guan H Y, Victoria T. Improved Volume-of-Fluid (VOF) Model for Predictions of Velocity Fields and Droplet Lengths in Microchannels[J]. Flow Measurement and Instrumentation, 2016, 51: 105-115,
[16] Guodong Q, Xinghua W, Weihua C, et al. Development and Validation of Numerical Model of Condensation Heat Transfer and Frictional Pressure Drop in a Circular Tube[J]. Applied Thermal Engineering, 2018, 43: 225-235.
[17] Dae G K, Chul H J, Il S P. Comparison of Numerical Phase-Change Models Through Stefan Vaporizing Problem[J]. International Communications in Heat and Mass Transfer, 2017, 87: 228-236.
[18] Brackbill J U, Kothe D B, Zemach C. A Continuum Method for Modeling Surface Tension[J]. Journal of Computational Physics, 1992, 2: 335-354.
[19] Corral Roque , Zhi Wang. An Efficient Steady State Coupled Fluid-Solid Heat Transfer Method for Turbomachinery Applications[J]. International Journal of Thermal Sciences, 2018, 130: 59-69.